DBNS Filter

نویسندگان

  • Mette Hammer
  • Andrew Ostman
  • Ray Maleh
  • Hongbin Li
چکیده

.......................................................................................................................................... 3 Project Proposal ............................................................................................................................. 4 The application............................................................................................................................... 5 Design Requirements ..................................................................................................................... 6 Design Approach ............................................................................................................................ 7 Financial Budget ............................................................................................................................ 7 Project Schedule............................................................................................................................. 8 Conclusion ...................................................................................................................................... 8 References ....................................................................................................................................... 8 Appendices ..................................................................................................................................... 9

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 2-digit Dbns Filter Architecture

We have previously reported on a novel number representation using 2 bases which we refer to as the double-base number system (DBNS). Our preferred implementation uses the relatively prime bases {2,3}. If we allow the exponents of the bases to be arbitrarily large signed integers, then we can represent any real number to any arbitrary precision by a single digit DBNS representation. By represen...

متن کامل

Dynamic Bayesian Networks : Representation ,

Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible....

متن کامل

Dynamic Bayesian Networks : Representation , Inference and Learning

Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible....

متن کامل

Dynamic Bayesian Networks : Representation , Inference and Learning by Kevin

Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible....

متن کامل

Optimization of FRM FIR Digital Filters Over CSD and CDBNS Multiplier Coefficient Spaces Employing a Novel Genetic Algorithm

— It is well known that frequency response masking (FRM) FIR digital filters can be designed to exhibit very sharp-transition bands at the cost of slightly larger filter lengths as compared to the conventional FIR digital filters. The FRM FIR digital filters permit efficient hardware implementations due to an inherently large number of zero-valued multiplier coefficients in their transfer funct...

متن کامل

Speech Emotion Recognition Based on Deep Belief Networks and Wavelet Packet Cepstral Coefficients

A wavelet packet based adaptive filter-bank construction combined with Deep Belief Network(DBN) feature learning method is proposed for speech signal processing in this paper. On this basis, a set of acoustic features are extracted for speech emotion recognition, namely Coiflet Wavelet Packet Cepstral Coefficients (CWPCC). CWPCC extends the conventional MelFrequency Cepstral Coefficients (MFCC)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004